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Shattering transition in a multivariable fragmentation model
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We introduce a linear fragmentation model in which the fragments are described by two correlated
variables z and y, and, for the power law breakup rate a(z,y) = z*y®, we derive its exact solution.
The large fluctuations of the additional variable prevent any mean-field reduction to a one-variable
model. New features, such as shattering with power law decay of the mass, are obtained.
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Much attention has been recently given to the study of
sequential fragmentation processes which are involved in
a variety of physical situations like polymer degradation,
aggregate fragmentation, combustion, grinding of miner-
als, or nuclear fragmentation. The quantity of interest in
such problems is the distribution of fragments and most
theoretical approaches have been formulated in terms of
rate equations [1-7]. In all these studies, only one vari-
able has been retained to describe a given fragment, e.g.,
its mass or size. Significant progress in understanding
the kinetic behavior of the system for various forms of
the breakup rate has been made thanks to the derivation
of exact and scaling solutions. Additional properties like
the shattering or disintegration transition [1-8], in which
mass is lost to a dust phase of zero-mass particles, or in-
termittency of the fragment distribution [4,5] have been
also discussed.

The rate equation for the concentration of fragments
of mass (size) = at time ¢, c(x,t), is usually written as

+oo
%ﬂ;’tl = —a(z)c(z,t) +/

x

dz' a(z') f(z]z)e(2', t),
(1)

where a(z) is the overall fragmentation rate, which is
generally taken as a homogeneous function of z, and
f(z|z') is the conditional probability to produce a frag-
ment of mass x by the breakup of a particle of mass z’.
This linear equation describes a fragmentation process
which is driven by an external source. Aside from poly-
mer degradation studies [1,2], it has been, for instance,
successfully applied to interpret recent experiments on
desorption-induced fragmentation of colloidal aggregates
[9]. A similar equation has been used to model atomic
collisions cascades, where c(z,t) represents the distribu-
tion function of “hot” atoms of energy z [10]. Various
discrete versions of Eq. (1) have been studied as well as
extensions to include discrete and continuous mass loss
[3,6], binary collisions between particles [2], or inactiva-
tion mechanisms [5]. However, an obvious limitation of
Eq. (1) and of its generalizations so far studied is their
one-variable character: a unique variable, the mass or
size x, is kept to describe the fragment distribution. All
other variables, e.g., energy, charge, shape factors, or else
relative composition in multicomponent fragments, have
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been eliminated by some (implicit) mean-field treatment.
This procedure is indeed valid if the fluctuations of the
additional variables for particles having the same mass
are small, but this may not be taken for granted for all
physical situations.

Our goal, in this paper, is to study the influence of
these fluctuations on the fragmentation kinetics by in-
troducing explicitly an additional variable y, in the rate
equation. We consider a binary breakup process that is
described by the following equation:

Oc(z,y,t)

S8~ —a(@y)ele,y,t)

+oo +oo o
+2/ d:z:'/ dy'wc(x',y',t), (2)
z y

.lel

where c(z,y,t) is the concentration of fragments of mass
z and energy y (choice of energy as the second vari-
able is arbitrary here) and the conditional probability
to produce a fragment (z,y) from a larger fragment
(z',y’) is uniform. Since most theoretical efforts on one-
variable models have focused on homogeneous breakup
rates, which seem to be relevant for most physical sys-
tems [1-3,9,10], we take for a(z,y) the simplest gener-
alization, a(z,y) = z*y®. This breakup rate describes
fragmentation processes which can be considered, in a
significant range of the variables, as independent of a
typical size and a typical energy (interestingly, the case
a = 3 =1 has also been shown to describe the long-time
kinetics of a process of random sequential adsorption of
unoriented needles onto a line or a plane [11]). Moreover,
power laws generally allow a classification among possible
asymptotic behaviors of the relevant observables, which
is useful to analyze experimental data. A monodisperse
initial condition, ¢(z,y,0) = §(z — L)§(y — L'), is chosen.
Without loss of generality, we shall set in the following
L = L' = 1, which amounts to renormalize z as z/L,
y as y/L', and t as tL*L'®. When B = 0, one recov-
ers that c,(z,t) = f0+°° dy c(z,y,t) follows Eq. (1), with
a(z) = z* and f(z|z') = 2/2'. This one-variable equa-
tion has been exactly solved [1,7]. For a > 0, mass is con-
served and the solution obeys (asymptotically) a scaling
formula, whereas scaling breaks down and a shattering
transition appears for « < 0. In this latter regime, all
existing moments of the fragment distribution including
the total mass, decrease exponentially with time. Since
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our model is symmetric in  and y, a similar result is ob-
tained for the fragment-energy distribution when a = 0.

In what follows, we derive an exact solution for the
two-variable rate equation, Eq. (2), and we show that
except for « = 0 or B = 0, it does not reduce to an
effective one-variable model. As a result of the corre-
lations between the two variables, new features appear
in the fragmentation kinetics: even for positive a and
3, no simple two-variable scaling is found; a nontrivial
phase diagram is obtained for the shattering transition,
and when shattering occurs for « and 3 of opposite sign,
the competing effects associated with the two variables
slow down the disintegration process and lead to power
law decay of the mass.

To derive the solution, we first introduce the moments
of the distributions c(z, y, t),

1 1
M),.(t) :/ dm/ dym’\y“c(a:,y,t), (3)
0 0

and, by inserting Eq. (3) in Eq. (2), we derive the fol-
lowing equation for A\+1>0and p+ 1> 0,

dM>,(t)

2
a (1 - WT)) Mixto)(uts) (1),
(4)

with the intial condition M), (0) = 1.

When o and 3 are both positive, all moments (A+1 > 0
and p+1 > 0) are defined. Following Charlesby’s method
[12], we expand the moments in powers of ¢ and we obtain
the solution of Eq. (4) as a generalized hypergeometric
function [13],

A+1 +1
Mz\u(t) - 2F2 (A/\;u B)\u.v ) ‘LLTv _t> ) (5)
where A, and B,, are given by
A)\M _ ¥ +1 A+1
By, | 28 20

L VIa(p+1)—BA + 12 +8af
2a0 )

The preceding formulas represent a generalization of
the one-variable result in which the moment M,(t) is
expressed as a generalized hypergeometric function of
lower order, 1F1((A —1)/a; (A + 1)/a; —t) [1]. However,
a new feature appears here; instead of a unique con-
served moment in one dimension, i.e., the mass M;j(t),
an infinite set of moments, represented by the hyper-
bola (A + 1)(p + 1) = 2, are conserved. These moments
include of course the total mass, Mio(t), and the total
energy, Mo,(t), of the system. In the (A4 1, u+1) plane,
the hyperbola separates a region in which all moments
decrease with time and a region in which all moments,
including the total number of fragments, Moo (t), increase
with time [Fig. 1(a)]. The long-time behavior of the mo-
ments is obtained from the asymptotic expansion of the
generalized hypergeometric function [13],

(6)

put1
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(b)
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A+1
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£ et
A+1

FIG. 1. Domain of definition of the moments My, (t) in
the region (A+1) > 0, (1 +1) > 0: (a) @ > 0 and 3 > 0,
(b)) a <0and 8 > 0, (¢) « < 0 and B < 0. The hatched
zone denotes a region in which the moments are not defined
and varies for cases (b) and (c) with the values of o and 3.
In (b), the dashed part of the hyperbola (A + 1)(p + 1) = 2
corresponds to nonconserved moments.
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where B), is given by Eq. (6) and I'(z) denotes the
I" function. As a result of the correlations between the
variables z and y, the exponent of the power law is a non-
trivial function of (A+1)/a and (u+1)/8. For instance,
the total number of fragments increases with a power law
exponent [/(a + 8)%2 + 4aB — a — (](2a8) 1.

The solution for the fragment distribution ¢(z,y,t) is
derived by taking the inverse double Mellin transform of
Eq. (5). We can then express c(z,y,t) as a uniformly
convergent series in powers of %, y?, and t, the coeffi-
cients of which are explicitly obtained with the help of
the residue theorem. The formula is rather lengthy and
will be presented elsewhere [14], but we give below its
asymptotic form for large times:

+oo +oo (_1)m+n

~ ma, nB,—B, 1.1
C(ZL‘, Y, t) = minl C‘mn(aa ,3):1) Yyt s
m=0n=0
(8)
C(Amin' — Bomint)

Cmn b = b

(@) T(Amimy (=1 — Boin )T (=1 — Bprnr)
(9)
where n’ = —na—1and m’ = —mB—1. It can be checked

from the preceding expressions that c(z,y,t) does not
obey any simple two-variable scaling law. This repre-
sents a major complication compared to the one-variable
model.

When at least one of the parameters a or 3 is nega-
tive, Eq. (5) is no longer valid and the moments My, (t)
are not everywhere defined in the region characterized
by (A+1) > 0 and (x + 1) > 0. In this regime, one ex-
pects a phenomenon related to the shattering transition
in the one-variable model to occur. In the latter case,
shattering reflects the presence of a singular distribution
of zero-mass particles (the dust phase) which represents
the continuous limit of a macroscopic monomer contri-
bution appearing at finite times in a discrete model [1].
However, the two-variable case presents a much richer
phenomenology: in a discrete version of the model, var-
ious contributions of fragments that are both monomers
in mass and k-mers in energy (kK > 1) or monomers in
energy and k-mers in mass (kK > 1) would indeed ap-
pear, leading to a nontrivial singular contribution in the
continuous limit [note that the singular contributions are
not described by Egs. (1), (2), or (4)]. The behavior will
thus be different if both o and 3 are negative, in which
case the disintegration cascade involves both mass and
energy, and if o and 3 have opposite signs, which may
lead to competing effects.

The solutions of the moment equation, Eq. (4), with
the initial condition M), (0) = 1 and the necessary con-
straint M), (t) > 0 (for all defined moments) can be built

by considering the Meijer G functions which represent
an extension of the generalized hypergeometric functions
[13]. The proper solution of the moment equation for
a < 0 and B > 0 is then obtained as

['(1—Ax,)T (ﬁﬁil)
F(B)\u)r(l— %)

Ay,t_

1—B,,,1-A
<6 (o 25 ). a0
) o ) B
and for « < 0 and B8 < 0 as
T(1—A5,)T(1— By,)
M t) = Jd H
O T
1—-By,,1—A
<6 (1o Ra ). A
) ) B

where Ay, and B,, are still given by Eq. (6). The so-
lution for o > 0 and 8 < 0 is derived from Eq. (10) by
permuting (A + 1)/a with (¢ + 1)/8 and A, with B),.
Equations (10,11) can also be reexpressed as linear com-
binations of terms involving generalized hypergeometric
2F5 functions (see Ref. [13]), but it should be stressed
that they are not equivalent to Eq. (5). The domains of
definitions of the moments for « < 0 and 8 > 0, «a < 0
and B < 0 are illustrated in Figs. 1(b) and 1(c). Note
that when 8 — 0 and p = 0, Egs. (10) and (11) reduce
to the formula recently derived by Ernst and Szamel [7]
for the corresponding one-variable model.

With the exact solutions in hand, one can study the
main features of the shattering transition. Consider first
the case a < 0 and 8 < 0. From the asymptotic proper-
ties of the Meijer G functions [13], it is derived that all
defined moments including total mass and total energy,
decrease exponentially with time,

(1 — Axu)T(1— Bay)
L(1— 2390 - #5%)

My, (t) ~ , t— 4o, (12)

which is reminiscent of the behavior in the one-variable
model [1,2]. The asymptotic form of ¢(z, y,t) is obtained
by taking the inverse double Mellin transform of Eq. (12).
We rather focus here on the various energy-averaged frag-
ments mass distributions, c,(z,t) = fol dy y*e(z,y,t),
which are shown to behave asymptotically, when t — +o0o
and z — 0T, as

cu(z,t) ~ R P (13)
For 8 = 0 and p = 0, one recovers the one-variable result
of Cheng and Redner [2]. When 2/|a| — |3] < 0, the
above distributions go to zero in the small-mass limit. In
the opposite case, due to energy fluctuations, those with
p+1 < 2/|a] —|B| diverge. Equation (13) could be used,
following the interpretation given by McGrady and Ziff,
to define a fractal dimension of the dust [1].

Consider now the case a < 0, 8 > 0 (the case a > 0,
B < 0 is obtained by suitable permutations, cf. above).
A different type of behavior is observed: of all moments
corresponding to the hyperbola (A+1)(u+1) = 2, those
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with A + 1 > 4/2|a|/B are conserved, whereas all others
decrease with time. This can be rationalized by con-
sidering that the disintegration cascade primarily affects
the variable = (since & < 0 and § > 0). Because of
the correlation between = and y, a singular distribution
of fragments appears, but the fragmentation involving y
makes the whole process much less effective than when o
and 3 are both negative. There is, thus, some ambiguity
in defining the shattering transition. One could choose
as its definite signature either the appearance of a singu-
lar distribution of fragments or the decrease of Mio(t),
i.e., an apparent loss of mass. Retaining this latter defi-
nition, we can draw the phase diagram of the shattering
transition in the (e, B3) plane. This is shown in Fig. 2.
Although the model is symmetric in z and y, the phase
diagram is not symmetric because of the choice of Mi,(t)
to characterize shattering. It is quite remarkable that
an apparent loss of mass can be observed when a > 0,
provided 8 < —a/2 (Fig. 2). The shattering transition
is then triggered by the disintegration cascade primarily
involving the energy y via the correlation between z and
y. It represents a spectacular signature of the influence
of the large fluctuations of the additional variable (here,
y) in our model and has no equivalent in the one-variable
case.

The asymptotic behavior of the (defined) moments is
again deduced from that of the G functions. For a <
0,8 >0,

)JT(1—Ax,)T (14 By, —211)

@

NG -B
M), ()~ I‘(l*%)FU%-B,\;L—AAM)F(MTH_B/\M) L
(14)
and for a > 0,8 < 0,
(AT (1-Bau)T(1+Axe — “57)

ra- E;*l)r(l*‘AA# _B/\u)r(% —Biu)

M,\#(t)l" =4,

(15)

Contrary to the one-variable model and to the present
model when @ < 0 and 8 < 0, the moments do not
decay exponentially with time. This results from com-
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FIG. 2. Phase diagram for the shattering transition [de-
fined by an apparent loss of the mass Mio(t)]. The hatched
region above the line 8 > —a/2 represents that part of the
diagram where mass is conserved and no shattering transition
occurs.

peting effects generated by the opposite signs of o and
B in the overall breakup rate. In the shattering region,
the total mass Myo(t) decreases as a power law of ex-
ponent —(1/8 + 2/a) . The asymptotic behavior of the
moments, Egs. (7), (12), (14), (15), may provide a means
to check experimentally if additional variables are indeed
relevant for a given fragmentation process. From Egs.
(14) and (15), one can also derive the asymptotic behav-
ior of ¢(x,y,t) and c,(z,t), but we shall present a full
discussion of the fragment distribution in another paper
[14].

Finally, we note that the important role played by the
correlations between variables in the present fragmenta-
tion process makes this model a good candidate to look
for intermittency in the fragment-mass distribution.
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